
www.umbc.edu

CMSC202
 Computer Science II for Majors

Lecture 09 –

Overloaded Operators and More

Dr. Katherine Gibson

Based on slides by Chris Marron at UMBC

www.umbc.edu

Last Class We Covered

• Overloading methods

– “Regular” class methods

– Overloaded constructors

• Completed our Rectangle class

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To learn about vectors

– Better than arrays!

• To learn about enumeration and its uses

• To learn how to overload operators

• To begin to cover dynamic memory allocation

4

www.umbc.edu

Principle of Least Privilege

• What is it?

• Every module

– Process, user, program, etc.

• Must have access only to the information and
resources

– Functions, variables, etc.

• That are necessary for legitimate purposes

– (i.e., this is why variables are private)

5

www.umbc.edu

Access Specifiers for Date Class

class Date {

public:

 void OutputMonth();

 int GetMonth();

 int GetDay();

 int GetYear();

 void SetMonth(int m);

 void SetDay (int d);

 void SetYear (int y);

private:

 int m_month;

 int m_day;

 int m_year;

};

 6

should all of these
functions really be
publicly accessible?

www.umbc.edu

Vectors

www.umbc.edu

Vectors

• Similar to arrays, but much more flexible

– C++ will handle most of the “annoying” bits

• Provided by the C++ Standard Template
Library (STL)

– Must #include <vector> to use

8

www.umbc.edu

Declaring a Vector

vector <int> intA;

– Empty integer vector, called intA

9

intA

www.umbc.edu

Declaring a Vector

vector <int> intB (10);

– Integer vector with 10 integers,
initialized (by default) to zero

10

0 0 0 0 0 0 0 0 0 0

intB

www.umbc.edu

Declaring a Vector

vector <int> intC (10, -1);

– Integer vector with 10 integers,
initialized to -1

11

intC

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

www.umbc.edu

Vector Assignment

• Unlike arrays, can assign one vector to another

– Even if they’re different sizes

– As long as they’re the same type

intA = intB;

 size 0 size 10 (intA is now 10 elements too)

12

0 0 0 0 0 0 0 0 0 0

intA

www.umbc.edu

Vector Assignment

• Unlike arrays, can assign one vector to another

– Even if they’re different sizes

– As long as they’re the same type

intA = intB;

 size 0 size 10 (intA is now 10 elements too)

intA = charA;

 NOT okay!

13

www.umbc.edu

Copying Vectors

• Can create a copy of an existing
vector when declaring a new vector
vector <int> intD (intC);

14

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

intC

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

intD

www.umbc.edu

Accessing Vector Members

• We have two different methods available

• Square brackets:
intB[2] = 7;

• The .at() operation:

intB.at(2) = 7;

15

www.umbc.edu

Accessing Members with []

• Function just as they did with arrays
for (i = 0; i < 10; i++) {

 intB[i] = i; }

• But there is still no bounds checking

– Going out of bounds may cause segfaults

16

0 1 2 3 4 5 6 7 8 9

intB

www.umbc.edu

Accessing Members with .at()

• The.at() operator uses bounds checking

• Will throw an exception when out of bounds

–Causes program to terminate

–We can handle it (with try-catch blocks)

• We’ll cover these later in the semester

• Slower than [], but much safer

17

www.umbc.edu

Passing Vectors to Functions

• Unlike arrays, vectors are by default
 passed by value to functions

–A copy is made, and that copy is passed
to the function

–Changes made do not show in main()

• But we can explicitly pass vectors by reference

 18

www.umbc.edu

Passing Vectors by Reference

• To pass vectors by reference, nothing changes in
the function call:

// function call:

// works for passing by value

// and for passing by reference

ModifyV (refVector);

• Which is really handy!
• But can also cause confusion about what’s

going on, so be careful
19

www.umbc.edu

Passing Vectors by Reference

• But to pass a vector by reference, we do
need to change the function prototype:

// function prototype

// for passing by value

void ModifyV (vector < int > ref);

• What do you think needs to change?

20

www.umbc.edu

Passing Vectors by Reference

• But to pass a vector by reference, we do
need to change the function prototype:

void ModifyV (vector&< int > ref);

void ModifyV (vector <&int > ref);

void ModifyV (vector < int&> ref);

void ModifyV (vector < int > &ref);

void ModifyV (vector&<&int&> &ref);

• What do you think needs to change?

21

www.umbc.edu

Passing Vectors by Reference

• But to pass a vector by reference, we do
need to change the function prototype:

void ModifyV (vector < int > &ref);

22

www.umbc.edu

Multi-Dimensional Vectors

www.umbc.edu

Multi-Dimensional Vectors

• 2-dimensional vectors are essentially
“a vector of vectors”

vector < vector <char> > charVec;

this space in between the two
closing ‘>’ characters is required
by many implementations of C++

24

www.umbc.edu

Elements in 2D Vectors

• To access 2D vectors, just chain the accessors:

• Square brackets:

intB[2][3] = 7;

• The .at() operator:

intB.at(2).at(3) = 7;

25

you should be using
the .at() operator
though, since it is
much safer than []

www.umbc.edu

resize()

void resize (n, val);

• n is the new size of the vector

– If larger than current size, vector is expanded

– If smaller than current,
vector is reduced to first n elements

• val is an optional value

– Used to initialize any new elements

– If not given, the default constructor is used

26

www.umbc.edu

Using resize()

• If we declare an empty vector, one way we can
change it to the size we want is resize()

vector < string > stringVec;

stringVec.resize(9);

• Or, if we want to initialize the new elements:

stringVec.resize(9, “hello!”);

27

www.umbc.edu

push_back()

• To add a new element at the end of a vector

void push_back (val);

• val is the value of the new element that will
be added to the end of the vector

charVec.push_back(‘a’);

 28

www.umbc.edu

resize() vs push_back()

• resize() is best used when you know the
exact size a vector needs to be

– Like when you have the exact number of
students that will be in a class roster

• push_back() is best used when elements
are added one by one

– Like when you are getting input from a user

29

www.umbc.edu

size()

• Unlike arrays, vectors in C++ “know” their size

– Because C++ manages vectors for you

• size() returns the number of elements in
the vector it is called on

– Does not return an integer!

– You will need to cast it

30

www.umbc.edu

Using size()

int cSize;

// this will not work

cSize = charVec.size();

// you must cast the return type

cSize = (int) charVec.size();

31

www.umbc.edu

Enumeration

www.umbc.edu

Enumeration

• Enumerations are a type of variable used to
set up collections of named integer constants

• Useful for “lists” of values that are tedious to
implement using const

const int WINTER 0

const int SPRING 1

const int SUMMER 2

const int FALL 3

 33

www.umbc.edu

Enumeration Types

• Two types of enum declarations:

• Named type
enum seasons {WINTER, SPRING,

 SUMMER, FALL};

• Unnamed type
enum {WINTER, SPRING,

 SUMMER, FALL};

34

www.umbc.edu

Named Enumerations

• Named types allow you to create variables of
that type, to use it in function arguments, etc.

// declare a variable of

// the enumeration type "seasons"

// called currentSemester

enum seasons currentSemester;

currentSemester = FALL;

35

www.umbc.edu

Unnamed Enumerations

• Unnamed types are useful for naming
constants that won’t be used as variables

int userChoice;

cout << “Please enter season: ”;

cin >> userChoice;

switch(userChoice) {

case WINTER:

 cout << “brr!”; /* etc */

}

 36

www.umbc.edu

Benefits of Enumeration

• Named enumeration types allow you to
restrict assignments to only valid values

– A ‘seasons’ variable cannot have a value other
than those in the enum declaration

• Unnamed types allow simpler management of
a large list of constants, but don’t prevent
invalid values from being used

37

www.umbc.edu

Operator Overloading

www.umbc.edu

Function Overloading

• Last class, covered overloading constructors:

• And overloading other functions:
 void PrintMessage (void);

 void PrintMessage (string msg);

39

www.umbc.edu

Operators

• Given variable types have predefined behavior
for operators like +, -, ==, and more

• For example:

stringP = stringQ;

if (charX == charY) {

 intA = intB + intC;

 intD += intE;

}

 40

www.umbc.edu

Operators

• It would be nice to have these operators also
work for user-defined variables, like classes

• We could even have them as member
functions!

– Allow access to member variables and functions
that are set to private

• This is all possible via operator overloading

41

www.umbc.edu

Overloading Restrictions

• We cannot overload ::, . , *, or ? :

• We cannot create new operators

• Some of the overload-able operators include
=, >>, <<, ++, --, +=, +,

<, >, <=, >=, ==, !=, []

42

www.umbc.edu

Why Overload?

• Let’s say we have a Money class:

class Money {

public: /* etc */

private:

 int m_dollars;

 int m_cents;

} ;

43

www.umbc.edu

Why Overload?

• And we have two Money objects:

// we have $700.65 in cash, and

// need to pay $99.85 for bills

Money cash(700, 65);

Money bills(99, 85);

• What happens if we do the following?

cash = cash - bills;

 44

cash is now 601
dollars and -20
cents, or $601.-20

www.umbc.edu

Why Overload?

• That doesn’t make any sense! What’s going on?

• The default subtraction operator provided by
the compiler only works on a naïve level

– It subtracts bills.m_dollars from
 cash.m_dollars

– And it subtracts bills.m_cents from
 cash.m_cents

• This isn’t what we want!

– So we must write our own subtraction operator

45

www.umbc.edu

Operator Overloading Prototype

Money operator- (const Money &amount2);

46

We’re returning
an object of the
class type

This tells the
compiler that
we are
overloading
an operator

And that it’s
the subtraction
operator

We’re passing in a
Money object as a
const

www.umbc.edu

Operator Overloading Prototype

Money operator- (const Money &amount2);

47

We’re returning
an object of the
class type

This tells the
compiler that
we are
overloading
an operator

And that it’s
the subtraction
operator

We’re passing in a
Money object as a
const

www.umbc.edu

Operator Overloading Prototype

Money operator- (const Money &amount2);

48

We’re returning
an object of the
class type

This tells the
compiler that
we are
overloading
an operator

And that it’s
the subtraction
operator

Why would we
want to do that?

Reference means we don’t
waste space with a copy,

and const means we can’t
change it accidentally

We’re passing in a
Money object as a
const and by
reference

www.umbc.edu

Operator Overloading Definition

Money operator- (const Money &amount2)

{

 int dollarsRet, centsRet;

 // how would you solve this?

 // (see the uploaded livecode)

 return Money(dollarsRet, centsRet);

}

49

www.umbc.edu

When to Overload Operators

• Do the following make sense as operators?
(1) today = today + tomorrow;

(2) if (today == tomorrow)

• Only overload an operator for a class that
“makes sense” for that class

– Otherwise it can be confusing to the user

• Use your best judgment

50

www.umbc.edu

Announcements

• Project 2 is out – get started now!

– It is due Thursday, March 10th

• Exam 1 will be given back in class on Tuesday

• We will discuss it then

• I will not be here Thursday

– Dr. Chang will be filling in for me

– He will cover dynamic memory allocation in detail

 51

